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1.    VIBRATIONAL SPECTRUM OF A ONE-DIMENSIONAL CHAIN WITH 

RANDOMLY DISTRIBUTED IMPURITY SPRINGS 

by 

Hin-Chiu Poon and Arthur Bienenstock 

Division of Engineering and Applied Physics 

Harvard University,  Cambridge, Massachusetts 

ABSTRACT 

The frequency spectrum of a one-dimensional lattice containing 

randomly distributed impurity springs has been evaluated to first order in 

the concentration,  a,   of impurity springs.    It is shown that, with some 

mathematical manipulation,  the solution can be placed into correspondence 

with the solution of Langer for the analogous problem of isotopic impurities. 

The virtual crystal approximation which yields the correct elastic constants 

requires an effective spring constant,  yf    which is given,  in terms of normal 

spring constant,  7, and the impurity spring constant,  7',  by the relation 

i/y MO-q^Tl + q/r • 

I.    INTRODUCTION 

In recent years,  considerable progress has been made in the 

calculation of the vibrational properties of solids with isotopic impurities [l]. 

For a variety of reasons,  however,  there has been less consideration of 

problems in which the interatomic force constants are varied. 

1-1 
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ARPA-18 1-2 

Such problems appear,  at first,  to be unrelated to actual physical 

situations.    In the disordering of two alloys of the beta-brass type,   CuZn and 

CoFe, however,  the constituents have almost identical atomic masses.    The 

primary result of disordering appears to be a. change of force constants.    Since 

the change of the vibrational spectrum wi'h order influences the equilibrium 

state   of   order,  it will be necessary to understand these changes before a 

complete understanding of the order-disorder process Is possible. 

First steps in this direction have been made by Wojtowicz and 

Kirkwood [2] as well as Oguchi and Hiroike [3].    In both cases, however, there 

are approximations which considerably limit the applicability of the results. 

While it is highly likely that any solution of these problems will be approximate, 

there is reason to believe that more satisfactory approaches may be found. 

For that reason, we have turned our attention to the formal solutions of certain 

simplified problems.    It is hoped that these solutions will load to some insight 

that will,  in turn,  lead to better approximations.    This first solution of a one- 

dimensional problem has been solved to develop useful mathematical procedure. 

Solutions of problems of higher dimensionality have been obtained.    They will 

be presented when they are understood. 

The problem which is treated here is that of a linear chain of atoms 

with the same mass and nearest neighbor interactions.    Randomly positioned 

springs are replaced by springs which have a different force constant,  and 

the spectral distribution function i« calculated to first order in the concentration 

of the impurity springs.    The mathematical techniques used are almost identical 

to those of Langer [4] who obtained an exact solution,  to first order in the 

üf 
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concentration,  for the spectral density function of a one-dimensional chain 

of identical atoms into which isotopic impurities are randomly placed.    Indeed, 

we proceed by showing that the problem considered here can be placed in the 

same form aa the problem which Langer considered,  and than use his results. 

The corresponding order-disorder problem is both simple and 

uninteresting.    Consider a chain consisting of two distinct chemical species, 

A   and   B,  of the same mass, which alternate in position in the ordered ground 

state.    Let the ordering process and the vibrational spectrum be controlled by 

nearest neighbor interactions,  such that the spring constant between A-B pairs 

is different from that between A-A and B-B nearest neighbor pairs.    Let the 

force constants between A-A and B-B pairs be identical.    Such a situation 

would be obtained from the polar model of Mott [5] or Harrison and Paskin [6] 

if their interactions were of sufficiently short range (which ihey are not) and 

if the repta-sive interactions were all the same.    The first configurational 

excited state of such a system is one in which there is an A-A or B-B pair 

somewhere along the chain,  but perfect short range order elsewhere.    That 

is,  there is a simple antiphase boundary.    The corresponding vibi = tional 

spectrum would be one for an isolated single impurity spring constant placed 

at random in the chain.    The next excited state which maintained the 

composition would consist of two such antiphase boundaries.    One would be 

between an A-A pair and another between a B-B pair,  so that they would 

be separated from one another by more than a nearest neighbor distance. 

(This restriction can be lifted by the choice of suitably chosen grand 
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canonica) ensemble.)   It follows that the randomly placed impurity spring 

constant problem can be brought into close analogy with the one-dimensicnal 

order-disorder problem where the concentration of impurity springs is 

analogous   to the decrease of the short range order parameter     om unity. 

It should be noted that the choice of randomly positioned impurity springs 

makes this solution applicable to the order-disorder problem,  rather than the 

impurity problem.    That is,  one might be concerned with the effect of randomly 

distributed impurity atoms on the vibrational spectrum.    The major feature of 

these impurities might very well be the changing of force constants,  rather 

than the changing of the mass.    To treat this problem, however,  one would be 

obliged to consider randomly distributed pairs of impurity springs on the sides 

of the impurity atom,  rather than randomly distributed ringle springs. 

II.    FORMULATION OF THE PROBLEM 

The formulation of the problem presented here is similar to, and whenever 

possible and practical,  identical to that presented by Langer [4].    We consider 

a very long chain in which every atom has the same mass.    There are two types 

of force constants present in the chain,  -y  and   y* .    The concentration of 

impurity force constants,  7' ,  is   q , where   q « 1      The unperturbed chain 

has   q = 0. 

For a particular distribution of springs, y  and   y* along the chain, the 

equations of motion are 

mx^T        j (x^i-xp+r   |+1 (x^-x,). (1) 
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Here   x.   is the displacement of the atom at the site   I , and  y.  . .    is the 

force constant acting between atoms at site   I   and   1-1.    The equations of 

motion can be rewritten as 

mV?(xi.i -^ -T(xi+i -v 

=   iX^i.i - r) (^1.1 - ^) + (^ i+1 -7 )(xi+1 -x,). (2) 

The transformation to the normal coordinates,    Q.   , of the unperturbed 

lattice is 

N/2 

<Nm) /2 k=i/2 \ 
where   N   is the number of atoms in the   chain.    Substitution of Eq.   (3) into 

Eq.   (2) yields 

k' 

where 

u),   = ü      |sin (ffk/N)| , u     = (47/m)1/2 (5) wk     -m ,,'i" ^-/"M » «m 

and 

i 

x      [(TJ; i+rT)exp (irik,/N)-(7i ^j -7)exp (-irik'/N)] . (6) 

T 
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Equation (4) is identical in form to Langer'? Eq.   (4).    The entire 

difference between the two problems is contained in the explicit form of the 

*k k' > as exPre38e^ in ^<1-   ^)- 

For a particular configur*.. :n of springs, we can write 

such that Eq.  (4) becomes 

(7) 

I<D"\,k.Qk. = 0- (B) 

Following Langer,  the spectral distribution function for this configuration, 

defined by 

^^N^I^n2-2)* (9) 

where the   Q    are the exact eigenfrequencies for the particular configuration n 

of springs,  is given by 

«(W) = T  N^  ^ImTrD^ + iO 
c-0 

(10) 

Xo obtain the spectral distribution function for the random distribution 

of springs   g (u), we must average over all configurations which are 

consistent with a fixed value of   q.    As shown by Langer,  it is sufficient to 
2 7 7 

take the configuration average,  D (w   + ic) ,  of  D (u   + ie).    D (u   + ic ) 

is diagonal in   k ,  so that 
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g(u) - T- 
lim    1 Im )   D,   (u2 + ie). 

k 

(ID 

III.    CONFIGURATION AVERAGE 

Following Langer, we obtain from Eq.   (7) for a particular configuration, 

6 
Di,  uiUj")   =   —5" 'k,k' 

"k   " w "k 

which may be iterated to yield 

/  2, 1 
Dk,k'(ü )=      2       t 

^T " --T—T   I *k, k" Dk«, k'^ 
- w u,,    - W       til 

(12) 

"k -w 

6k,k' 
*k,k' 

-      2       ^ 
u,k    -U) 

^-    *k k   *k    k" 

^   (^-u2)^,2^2) 

+ ..... • (13) 

The average over configurations is performed at this point.    Since the    u,'s 

are properties of the unperturbed lattice,  it is only necessary to obtain 

n' 
configurational averages of the products   *,   ,     *,     v    ... 

proceed to obtain these averages.    The first,   <*,   , , >  may be obtained in 

the same manner as Langer obtained his Eq.  (19).    We get 

< V >   =  ^^Nm^^^    < IexP ^ (k'-k)l/N] 
I 

x    [(Ti>i+1-'y)exp{iirk'/N).(7iji_r7)exp(-iirk,/N)] > . (14) 



Ar.PA-18 1-8 

This expression is evaluated by keeping   I  fixed while summing over configura- 

tions.    We get zero contribution from any configuration in which   y.  . .   or 

y. .       -    i      Since   y. . , = 7'   with frequency   q ,  one obtains 

^m -T> = <^,i-i -T> ^ q^' -Y), 
and 

(15) 

2 
< K v. > = 48i^yk,/N)    q (T. - 7) ^ exp [2irii(k' .k)/N] k.k' > = !* 

I 

= q^i x ök ki » (16) 

where 

X   =   (y/7)  - 1 . (17) 

Next consider the second-order term, 

<«kk   »k    k. >   =   (-4/N2m2)sin(7rk1/N)8in(irk,/N) 

x   < y     {exp 2iri (kj -k) ^/N exp Zvi (k' -ki) i2/N 

'l'^ (18) 

x   KYi    , +i-t)exp(7rik1/N) .(7      #    1-7)exp{-7rik1/N)] 
1'   1 1'   1" 

x   td.    # +1 -T) exp (TTik'/N) - (7,    ,    , -7) exp (-fflk'/N)]) > . 
*Z'  Z 2* 2" 

Terms   which ^re first order in   q   appear in the configuration average 

of the four terms represented by the product of the square brackets whenever 

the two springs of one of the fo>ir terms are identical.    That is, when   i-= i, , 
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l_ = 1,  - 1,  or   I« = I. + 1.    This complication distinguishes the problem 

considered here from that of Langer,  in which only the terms   i, = i_   contribute 

to first order in   q.    This extra complication forces us to use a slightly 

different approach in the evaluation of the general product of the   *'s.    For the 

second-order term,  however,  it is easy to sum the appropriate terms. 

For terms with   i. = i_ , we obtain 

M/Nm^sindrl^/N) sin (ffk'/N) ök k, q(T'-7)2 

x   [exp Hi (kj+k^/N + exp - ffi (kj+k'J/V . (19) 

Terms with   i? = i,-l yield 

(4/Nm2)sin(irk1/N)sin{irk7N)   6k k, q{7'-7)2exp [iri(k1-k,)/N] ,     (20) 

while terms with   I- = ^,+1   yield 

(4/Nm2; sin (ffkj/N) sin (irk'/N) Ök kl q^'-T)2 exp [-irKkj-k^/N].      (21) 

Summing the contributions from (19),   (20),  and (21), we obtain 

< *k k *k k» > = K2 «V2/^ ^ ök - + 0^2) • w 

It should be noted thai although the intermediate steps are different, 

the result is identical to Langer's Eq.   (22). 

We now proceed to evaluate the configuration average of the general 

product. 

JBBgP 
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<«,,*.     ,      * > 
'1     1*2 n-1'   n 

1     Z n 

x  ^7!    i +i-T)exp(irik1/N)-(Ti    i    ^^expC-irikj/N)] 

X  f^i , i +1 "7) exp <*ik2/N) " ^i    i -1"Y) exP (-irik2/N)] 

X 

x  [(7,    *      -T) exp (irik /N) - (r#    #      -^expC-irik /N)] >, (23) 
n» n+1 n n'  n-1 n 

where   kn = k' .    Equation (23) can be written in the form 

'1 r     •  » n-1'   n 

X<     I I    ■   "I    {exP^-t(k1-k)i1 + ...+(kn-kn_1)in]      (24) 
1 n    1   -       n - 

_ n 
x TT {*s (7i i 4 o- "^ exP (ir i 6'ikiA^)]} > J=l   J    j' j   j J J 
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Let us fix our attention on a particular   i,   .    For   o-,  = + 1,   Eq.   (24) will 

yield terms of order   q   only if,   for all values of   s = 2, 3? . . . , n     i    = <,    and 

a    =+1,   ori    =i, +1   and   0"    = -1.    Similarly,  for   or,  =HL  terms of order s ' s       1 s 7' 1        ' 

q   will be obtained only if   i    -■ i,    and   a    =-1   or   I   =1,-1   and   a    = + 1. 
3 1 S S A S 

These restrictions are summarized by the condition that 

'5 = 'l + I   ''1   " ff8 >  ' <25) 

Thus, we obtain all the terms of o 'der   q   in Eq.   (24) by substituting Eq.   (25) 

into it,  dropping the summations ov^r all   i.   but   i. = i.  ,  but retaining the 

summations over the   <r, .    The result is 
J 

'1 n _ 1 ?     » I n-l?   n 

( = 21) ,  .     >n 
V   '   q iy -y) 

~n JTk. 
TJsin(^) 7 exp [ ^-(kn-k)i1 1 

-1     'l (26) 

X   2/     "'2J   ^l exp ^—H—)]Tö"jexp [^(k^-k^jXffj-o-^+o-^] . 
o-^+l    tr   =+1 ■' = 2 

1  —        n — 

The summation over   i,    in Eq,   (26) can be performed immediately 

This leaves the summations over the   <r   variables.    The coefficients of k s 

in the exponents which remain are 

{^[^-(Oj-o-^l/N) = (i7r(r2/N) for 6 = 1, 

{iff[((rr<rs)+o-s-(<r1-aa+1)]}  = (iir (rg+1/N)    for     s = 2, . . . , n-l, (27) 

{i7r[(a1-o-n)+(rn]/N}    =   (iTTo-j/N)        for   s=n. 

- e*f~ 
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Therefore,  Eq.   (26) can be rewritten as 

•k. k 4, k     ..k   > r» - I '     n 1 n-P   n 

(-2i)n 

,Tn-l    n 
N       m 

"n irk. 
TTsini-^) x ök k q w-y}* 

'   n 
(28) 

X I        (TT'J)  
exp ^^2kl+<r3k2+- • -^n^-l^lV^ • 

Since the   cr.   are equivalent variables of summation,  Eq,   (28) can be rewritten 

as 

*»V"   kn-l'kn 

n ffk. \ /   '>4\n „  /  n «k; \   V n /ITio-.K.     » 
=   AT" «. W-r)» (j; -in ^)  ^       ^ exp fV-) . 

ff, ... T 
1        n 

(29) 

In this form,  the sums can be performed readily.    Using Eq.   (5),  the average 

becomes 

> = 5 <*,,...*. .       >:::öqX.     tV.   **_   . . . W. /N* 
'    1 n-l'   n »   n 1 n-1 

(30) 

Equation (30) is completely equivalent to the term which is linear in 

q   in Langer's Eq.   (25). 
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IV.    THE VIBRATIONAL SPECTRUM 

Because of the equivalence presented above,  it is possible to use 

Langer's results directly.    He finds vibrational modes associated with each 

value of   k ,  and with frequency given by 

w   =   (^ + Ak - irk    • (31) 

Here, 

u>k  q*(üm -u)k ) 
Ak= r —2—TTTir 

üm 'ük {l'K) 
(32) 

and 

r,  = 
„2      ,      2       2,1/2 

ük ^   "k^m  -ük ) 

T T 
ü_ m 
 5 T" (33) 

where 

K   =   \/(l + \) = 1 - (7/y) . (34) 

In these expressions,    F,    is a measure of the width associated with    ach 

phonon of wave vector   k   due to the lattice disorder. 

In addition,  the density of states is given by 

g(w) = -|- Re 
2     2.     m 

w      -u +   m 

2    „,      2    2.1/2 
m 

(w    '-w )      + iKu m 

-1/2 
(35) 

Since Lianger has discussed his results extensively and carefully, 

we shall only draw attention to certain aspects of the results which were not, 

apparently, of primary interest to him,  or are unique to the problem considered 

i 
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It should be noted, however,  that it is    1/7   and   1/7'   in this work 

which correspond to Langer's   M   and   M',  respectively.    This correspondence 

become*» obvious when the different definitions of   X.   are examined. 

In the long wavelength limit, and with   71 ä   7 

w2 «   4 sin (J^)/M[{Kl)^r+ -^ ] . (36) 

Thus,  in the elastic limit, an average spring constant can be defined by 

4=^^- (37) 

The frequency spectrum is,  in this limit,  identical to that which would 

be obtained if all the springs were replaced by the correctly averaged spring. 

It is important to note,  however,  that this correct averaging,  to obtain 

a virtual crystal approximation,  is of 1/7,  rather than   7   itself. 

While this result might be expected,  its application, as an approximation 

to a two or three dimensional system, is highly suspect.    The obvious reason 

for this is as follows.    When the linear chain is placed in tension, the atoms 

adjacent to the impurity springs are constrained to move along the line of 

tension.    The analogous situation in three dimensions is one in which tension 

is applied in a manner which corresponds to the limit of a pure longitudinal 

mode of the unperturbed lattice.    When the impurity springs are introduced, 

however,  equilibrium may be reached by displacements which have components 

normal to the direction of the tension.    In this case 2q.   (37) is not valid. 
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It is also of some interest to examine the form of   F,   ,  as given in 

Eq.   (33).    It is easily seen that   I",   = 0   for   u,   = 0   or   w,   = w     .    Since   I, 

is positive,  it must have a maximum somewhere in between these two points, 

That maximum occurs for 

"k    =W m 
3 - (I+8/C2)1/2 

2 {UK1) 
(38) 

2 for all possible values of K   .    The functional form of   F,    is shown in Fig,   1. 

The maximum is quite evident.    In the paragraphs which follow,  an attempt 

is made to explain this behavior. 

The mathematical origin of these widths is discussed by Langer.    Each 

member of the ensemble is not periodic,  and   k   does not label an eigenvector. 

Thus, a measurement which fixes   k  will yield a spread in frequencies. 

Although   k   becomes,  in a certain sense, a good label for the ensemble average, 

the spread in frequencies must remain.    Mathematically, we see the spread 

in the form of the average spectral distribution function, 

*("' = T    N-co-ff  ^   2    Dk("
2^), (39) 

e-^0 k 

For the unperturbed chain, 

Dk (u2 + ic) = lAwfc2 -w2 - ie) . (40) 

te poles of   Djju )   occur at the eigenvalues associated with   k .    Langer's 

results may be paraphrased as follows.    For the perturbed problem,  there are 

a number of frequencies,  denoted   u»,    . , which are positions of the poles of 

each   D    (w + ic) .    These poles lie at the solutions of 

ajiijp T -Lrr^r=     Iz^T^S 
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where, from Langer's work, 

2                ^Kük2 

Gk<W >  =  —T~ ~— W 
1+TrZ    2  2 

k' "k' -w 

to first order in  q . 

The contribution to   g(u))   from any one of the frequencies associated 

with   k   is proportional to the residue at the corresponding pole of   D, (u ), 

which is 

Res {Dk(W
2)} = [-2^ ..(8/öu) Gk (W

2} | J"1     . 
w=wk,i n^i 

As indicated in Fig.  2, this residue is largest for u,   .   in the vicinity of   u. 

and dirninishes rapidly on either side of this point as     {BG/BU) I becomes 
^"k, i 

large. 

With these results of Langer,  the mathematical origin of the form of 

Fig.   1 is readily visualize-'     For each   k ,    T,    is proportional to the range 

in   u   over which the   w,   .   have appreciable residues.    Let   n,    be the number 

of modes for which the residues associated with the   u,   .   are appreciable, 

and   p,    be the density of modes of the unperturbed system.    Then 

rk ^ VPk « nk (um2- "k2^72 • <44) 
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Thus, it is the singularity in the density of states which causes the vanishing 

of   r,    for   oh   = w     .    That is, although   n,    may be large for   k = k 

the infinite densi.y of states causes the total energy spread to be very small. 

It is evident that   F.   = 0   for   k ~ 0.    The form of the increase of   F, 

with increasing   k ,  up to the maximum is shown more explicitly,  however, 

by an examination of Figs.  2 and 3.    In these figures,  G, (w )   and   (u -w,   ) 

2 2 2 2 2 are plotted versus   u     for the cases   w,     « w     '   and  ü,     «   u       .    The k m K m 
2 2       2 ■* intersections of   G, (u )   with   (w  -fcV  )   occui' at the values of   w     equal to 

2 2 the   w,    . .    The residue associated with tnese   u,    .     is   appreciable,  however, 

only at those values of   w,   . ,  such that   BC/BU is small.    In Fig.   2,  only 

the central   u.    .   satisfies this condition, while in Fig.   3,  there are a number 

of terms for which the residue is appreciable.    Thus,  in the form of Eq.   (44), 

the maximum in   F,    may be pictured as a competition between the slowly 

increasing   n,    and  p,    which increases more slowly for small   k ,  but 

increases rapidly near   k r     J max 
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FIGURE CAPTIONS 

Fig.  1 The functional form of   i'       for the case of 
k 

K  = 2/3,  q = 1/10. 

2 2       2 2 2 2 
Fig.   2 ^k^ ' an^ ^w  ""k  ^ versus w   for «^    < < w 

2 2       2 2 2 2 
Fig.   3 ^k^w ^ an^ ^w  ""k V/ versus w   for "k   * w 
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2.    THE ELASTIC SPECTRA CF 

TWO DIMENSIONAL DISORDERED LATTICES 

by 

Hin-Chxu Poon and Arthur Bienenstock 

ABSTRACT 

The elastic vibrational spectra of perfurbed sqiaare lattice systems with 

nearest-neighbor central and noncentral   interactions have been derived.    The 

unperturbed system consists of masses^  m.   on Mie lattice points and interacting 

with force constants,  a ,  which determines tho resistance to compression,  and 

ß , which determines the resis^.ince to shear along the direction (10).    In one 

case,  the perturbations are   Nq   randomly positioned isotopic impurities of 

mass m', where   N   is the number of lattice sites.    It is shown that the elastic 

spectrum for this, and all other isotopic impurity systems,  is completely 

determined by the average mass, m= (1 -q)m + qm'.    In the other case, 

corresponding to certain order-disorder situations,  the constants describing 

the interactions between   2Nq   randomly positioned pairs of nearest neighbors 

are replaced by   a1   and   ß'.    To first order in   q ,  the resulting elastic modes 

are then completely determined by ar average   a , or , where 

- ri   . a («'-a)      i a   =   a   [ 1 +  ^ .     J 
a+'a'-aHZ/TTHan      (a/ß)  ' 

and ^ which is obtained from the previous expression via the Interchange of 

a   and   ß .    The appearance of   ß   in the expression  for   a   implies that the 

virtual crystal approximation fails.    It. is shown,  however, that two different 

2-1 



ARPA-18 ?.-2 

forms of the virtual crystal approximation place Kounds on the   a   and   ß ,   in 

accoruance with a general theory of Paul,    A physical interpretation of the 

results is also presented. 

I.    INTRODUCTION 

In a recent paper [1] (denoted,  hereafter,  as P-B) the authors obtained 

an expression for the vibrational frequency spectrum of a one-dimensional 

chain of atoms with the same mass and nearest -neighbor interactions.    Randomly 

positioned springs were replaced by springs which had a different force constant, 

and the s   sctral distribution function was calculated to first order in the 

concentration of the impurity springs.    The mathematical techniques used were 

a modification of those used by Langer [2] to solve the identical problem for 

the same unperturbed system in which the impurities were atoms with a different 

mass.    While the motivation for the previous paper was an attempt to obtain 

more information about the effect of disordering on the vibrational spectrum of 

binary alloys such as CuZn and CoFe,  in which the masses of the two constituents 

are almost identical,  the one-dimensional nature of the problem limited the 

value of the solution.    Nevertheless,  the mathematical techniques developed 

are quite helpful,  and will be used aere. 

In this paper,  two related problems are treated.    In both cases,  the 

unperturbed lattice is a square lattice array of atoms with same mass,  and 

with nearest-neighbor central and noncentral   forces.    In one case,  the two 

force constants describing the interaction between randomly positioned nearest- 

neighbor pairs of atoms are replaced by a different pair of force constanta. 

In the other,   randomly positioned atoms are replaced by atoms of a different mass, 

■ i 

i 
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For ccivtmience, we call the problems the impurity spring and impurity 

mass problems. In both cases, the elastic constants are obtained as a function 

of concentration, q,  to first order in   q. 

The moer striking feature of rhe results are that while the virtual crystal 

approximation is found to be valid fcr the impurity mass problem,  it is valid only 

for special cases in the impurity spring problem.    The explanation and implications 

of this result are discussed. 

11.     THE UNPERTURBED CASE 

In the unperturbed rase,  we are considering the vibrationai spectrum of 

a square lattice a^ray of atoms of mass   m.    In order to maintain both stability 

and only nearest-neighbor interactions,  thes^ interactions must be ncncentral. 

We label the atom at the origin by (0,0) and its four nearest neighbors by (1,0), 

(0, 1),   (T, 0),  and (0, 1).      The equations of mot on of the i-th atom are then 

mx"        i   )      C     , 'i, /'     x .    .   =   0 . (1) 

I1,a' 

Here,   the    £'    summation runs over the atom   t   and its four nearest neighbors, 

and the   a'   summation runs over the two orthogonal coordinates. 

The force constant matrices have the forms 

C(1,0)   =   CU,0)   =   -    I*   °j     , 

C(o,i)  =  C(o,T)  =   ■   [11 

C {0,0.   --   2 (a + ß)^    fj (2) 
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For central force interactions,  ß = 0   and the lattice shows zero 

frequency shear modes for propagation along certain principal directions, 

Expressing the displacements in terms of normal modes, 

c.      =   /   Q.     (k) exp i(k- R. -w.  , t) , (3) 

where   j (= 1 or 2) labels the two orthogonally polarized modes, and   7   labels 

a displacement component, we obtain the normal mode solutions, 

4     c      .2     x     ■  o     •   2    y       i Wl,k     ~--^   [aSin     "J- +ß am    -X-    ], 

2 4ra.2x..2y1 ,.. ü2,k    =   m   ^81n   -j-  +«ain    -|-   ], (4) 

with eigenvectors 

Qjik)  =  ( Q  )  , Q2(k)   =  (J ) • (5) 

Equation (5) implies that for any propagation vector   k , the two normal 

modes,    1   and   2,    have polarization vectors along   x   and   y ,   respe .tively. 

Thus,  one of the two labels,  j   and   7 ,  of   Qj,  7 in Eq.   (3) is redundant,  and 

will not be used hereafter. 
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THE IMPURITY SPRING PROBLEM 

A.    Formulation 

In this problam,  'he force constants f    a   and   ß ,  associated with   2N 

randomly positioned pairs of atoms,  are replaced by force constants   or1   and 

ß' .    To simplify   the equations of motion,  the four nearest neighbors of an atom 

which are separated from it by vectors (1,0),   (1,0),   (0, 1), and {0,1) are 

denoted by    [If 1^,   J^Z],   (i-fS),  and (jfr4),   respectively.    The equations of 

motion can then be wri4*en in the general form 

^m    l*l'1\J*   0]      lZX' 

/ß   0\    / 2xlfl  ^n3)l -x|+4j 

\o   a I    Ux        -x^3      ~x 

'1,1 " Xi-M. 1 " Xl+2, 1 

'1,2 ' x/+l,2 " xi+2, 2 

or • dr Xi, 1   ' X*+l, 1 

xl, 2        *TI,    ■' 

a    a t,trZ Xi, i   " xi+2, I 

0 ß^ß 
i, iJ z. 

0 

ot ■ a 
■ "1, « 3 / 

PP//t. 

a~Cf I, 1^4 

Xi, 2  " X<+2, Zi 

Xi, 1  " XH 3, 1 

Xi, 2 " Xi-f 3, 2 

X|, 1 " Xi+4, 4.l\ 

^,2 it 4, 2 

{V 

■■«'.  i^*>^ ?ri'**r'^Fmm**m* 
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Equation (6) can be rewritten in terms of the normal coordinates of 

the transformation 

i.      =    )   Q (k) exp ik- R. (7) 

Since all the force constant matrices are diagonal,  the   x   and   y   components of 

the displacement are independent.    Thus,  equations of motion can be written 

simply for each direction,  using Eqs.   (6) and (7).    In addition,  the two directions 

ai    indistinguishable.    Thus,  it is sufficient to study one direction of polarization 

over a complete quadrant of the propagation plane.    For the x-components of the 

displacements, we have 

Vmx^ i+aUx^ px^ j-x^ j) + ß (Zx^ r x|+3> j-x^ >) 

= (* .«M+1){x^ r xi+1> ,) + (or -^ ^^(x^ r x|+2j j) 

+ <ß-ßi,i+3Hxi>1-xi+3)1) + (ß-ßi>i+4)(xi>1-xi+4>1)   . (8) 

By substituting Eq.   (7) into Eq.   (8), and using Eq.   (4) to simplify the 

resulting expression,  one obtains 

U)   y   Q-Ck ) expik* R.+ m  >   u,   ,0,(1?) exp ik* R. -m 

= ^äf'öfi i+i V    ^1^-^ (i-^xpi^a) exp ik- R^ 
k 

+   (a-Ci t+zw    ^1 (li)(1-exP-ikx
a'exP iL    *i 

i 

+ ^'^i i+3) A Ql (k)(1-exPiky
a) expik- Ri 

k 

+ ^'^1 i+4) /   Q1(k)(l-exp-ik a) exp ik- ^ . (9) 
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Attr-r m'-J^piymg both sides of Eq.   (9) by exp-iJc'-R- and summing over 

I ,   one obc-i jns > 

mN [üf ,« • w"' Q1  [k
1; 

I*. K 

v [(ii   ■■ .      ,) l-expik a) r ia-a, ,i?){l-exp-ik a) 

P    ß^ r^'n   -xpikya) f (ß- ßf K4)(l-exp-ikya}] . (iO) 

Af'-T    r   --h-nging   k   and   k! and performing some trivial mathematical 

manipulrtMcn?,   Eq.   (10) can be written in the form 

.^ 
:.k   ^ü, >: = J »^ Qif) du > 

where 

$, ',.       <,"•      )   (exp-iik-k') •   R, 

*  [ .- . 'Of "I sin 'kv a *'I) exp (1 k: a/2) 

a^  j   ,   o ' stp (k'a/2) exp (-ik'a/Z) 

;Jf    ^ ,• ß   &;n (k^a/2) ex? (i V a/2) 

[ß,   ,,     -^ srn ;k;a/2) exp {-ikU/2)J }  . (12) 

' P A 
Th? sup; -^   ■ •]•     I . ■»-   *,   '. ,   is used to indicate that polarizations along   x 

only fl-f-  "      u'ird. 

■^M»" 
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Equation (11) is identical in form to Langer's [2] Eq.  (4) and Eq.  (4) of 

(P-B).    The three problems differ only in the form of the   *,   ,,     We shall 

follow the approach described in (P-B) because it is closer to the methods used 

here, although the basic technique was originally presented,  and is more 

completely described,  in Langer's paper. 

For a particular configuration of springs, we can write 

[D(1 V)]^ =   (^ - u2) 6k k,+ *k k, (13) 

such that Eq.   (11) becomes 

^ [D0^«2)]^.  QjOi'^G, (14) 

k1 

The spectral distribution function for   his configuration,  defined by 

n 

where the  Q    are the exact eigenf requencies for the particular configuration 

of springs,   is given by [2j 

.  .     4(j     lim     I    T     „    _(1) , 2 ,       . .... g(u) = i"   N-oo T<[  ^ Tr D       (w   + i€) . (16) 
€-♦0 

In this expression,  use of symmetry has made it unnecessary to include 

D(2)(u2 + ie) . 

To obtain the spectral distribution function for the random distribution 

of springs,  g (u) , we must average the distribution function over all 

configurations which are consistent with a fixed value of   q ,    As shewn by 

fsm*** *r-- --_-—-  „.„,„„.     -«^—      "    ——.— , __ ^ 
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Langer,  it :& sufficien* tc take the configuration average^-!)       (u) -^ic),   of (1) 

Dv    (y -fie'1.    As in the one-dimensional p 

in   k r   so that 

■—(1), 2 roblem,  Dx    (w + ic) is diagonal 

EWt 
v _' r 

TT    N-co    N Zv      k 
4u    1 im       1 

r it"; 

c-*0 

(17) 

B.    Configuration Averages 

As in {1),  D*   , , tu? )   may be iterated to yield 

Dk. W {* ) 

«, (1) 

ük -ü; 

lil! 
'—     w. u 

k, k"   *k,k' 

-1 

> 2       ^ 2 + . (18) 

The average over configurations is performed at this point.    Since 

the   ü,    are properties of the unperturbed lattice,  it is only necessary to 

obtam configura'ioral averages of the products    *i- i.    *!,     b-    *v     t   •••*u     v» 

V/e proceed to obtain these av »rages.    The first,  <*,   , ,>   is easily obtained. 

We need 
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<*k,iL'> -Jmr<l exp-i(k^)-R, 

x {8in(kjta/?.)[{a| i+1-ß)exp (ik^a/2)'(ai i+2-a)exp{-ik^a/2)] 

+ sin {k^a/2)[(ß|j |+3-ß)exp.:ikJfa/2)-(ßij |+4-ß)exp{.ik^a/2)]} > .        (19/ 

This expression is evaluated by keeping   i   fixed while summing over 

configuratWBS.    No contribution to the terms linear in the   a's   is obtainea 

from any configuration in which   or.  .  ,    o"   a.  .  _   is equal to   a .    The 

analogous situation holddi for the terms linear in   ß.    Denoting 

A« = a* - a 

and 

Aß=ß,-3, (20) 

the configuratiunal average is 

<*k!k.> = Jmr- J-pi(k'-k)  ^ 

x   q [2iAasin2{k,a/2) + 2i Aßsln2(k, a/2)] . (21) x y 

Performance of the summation over   i   yields 

< »k1^ = (Wm) [Aas;.n2(k^a/2) + Aß sin2(k^a/2)] 6 k kI   • (22) 

Next,  consider the second-order term 
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^^k K1*'"   z   -Pir    y      expi(krk) '  R   expKk'-kJ ■  R 

1'   2 

x < {sin(klxa/2)[(ari    /  f j-avexp {ik^a/^Ma^    ^ +2 ■Q')exp(-iklxa/2)] 

+ ain(klya/2)[;ßi    i +3"ß)exp (iklya/2)-(ßi    i +4-ß)exp(-iklya/2)3 } 

x {sinlk1 a/2) [(«.     ,     ,-^)exp (ik* a/2)-(of.     .  , ,-a)exp(-ik, a/2)] 

I sin k:k
,.a/2)[{ß|     .   ,,-ß)exp(ik,a/2)^ß#     #   , . ^ß)exp(-ik' a/2)]} > .      (23) 
V '2'   2 y '2'   2 y 

As before,   only terms in which the   a.   .   and   ß. . .   differ from   a 

and   ß ,   respectively,   contribute to the right-hand side of Eq.   (23).    In 

addition,  a? in sF-B),   only the product terms in which the   or. and 

ß.     .   represent the same springs as the   a. and   ß. ,   respectively, 

contribute *c first order in   q.    It should be noted that all the   or-terms 

correspond to springs which are parallel to the direction (1),  while all 

ß  terms correspond *o springs which are perpendicular to the direction (1). 

Thus,  all prcduc* terms which involve both   or's   and   ß's   must  vanish,   to 

firs* order in   q ,    for a product of   $'8   of any order.    As a result of these 

consideraUons,  we may write 

1 
\im ■ ■ i— i 
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<*k1)k   ^k1^' > = -^T 7    exp[i(k  -k)-R    JexplKk'-k  )-R    ] 
lVlZ 

X   {<fai1,i1+l-C?)exP(iklxa/2) 

x^(v,#+rö)exP( iki a/2) 

' (al    i +2-a)exP^ikia/2^ sin (ki a/2)  > 

+ <(P<i)li+3-P)exp(iklya/2) 

■ 'P»    ( +4-^) exP I-"1,   a/2)] sil> <ki  a/2- 
1'      1 ' ' 

x[(ßi    . +3-ß) exp (ik'a/2) 

" ^1     # +4-^) exP (-ik>/2'] sin (k'a/2)> }   . (24) i2, l2+4 / y 

The important feature of Eq>   (24) which makes this problem soluble 

is that the two-dimensional average of Eq.   (23) has been split into two one- 

dimensional averages which are mathematically identical to those which 

have been evaluated in (P-B).    This splitting occurs,   for terms which are 

first order in   q ,  for all order products of the   ^'s.    As a result,   using 

Eq.   (30) of (P-B),  we obtain the general expression 
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P. 1 ' 
W   k      k      W 

— n-i' —n 

qö 
k, k 
—' —n 

N n - m 

,  / k,   a 
.K     n        £ I    Ix uiOtj    sin 

2(    1   a\ 2  /    2  a ^ 
+    »Aß) " sin     —X—    sin       —^- 

.   2  /k2xa 

sm 

7    I kn   a 

...   sin    ( -^- 

2/ .K    d. 
/    nx 

. sin    I   —s  

(25) 

C.    Calculation of the Elastic Spectrum 

The form of Eq.   (25) indicates,  as expected,  that D       is diagonal 

in   k.    As a result, we may follow Langer and write the diagonal elements 

of D as   D   * where 
k 

Dk (w ) =     z—r-rnTTx- (26) 

The configuration average of Eq.   (18) may then be rewritten,   using 

Eqs.   (25'i and "26) as 

Ml)      V l)""1 ^n 

k ZJ M 
n ■!      n 

— ^ N rn 
n 

.A     n    .   2 
lAö/   sm 2")I /,       2 2 

n-1 

T i k a \ /-r-      sin    (k,   a/2) 

'Vkj    Wl,k 

n-l~ 

Vkj      wl,k  'w 

(27) 

T BHB" «W   ■     ■^ ! nWM»! 
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Since there are no terms in which both A a   and   Aß   appear,  Eq,   (27) 

is easily transformed into the expression 

.   2 .jj [4q{Aa)/m] sin    (k a/2) 

m 
A«)   Y 
N     L 

k 

sin  (k,   a/2) 
Ix  ' 

1 2" 
wl k   " w 

l        ^-i 

[4q(Aß)/m] sin^Ck a/2) 
— 1;.  

1 + 
4 (Aß) Y      8in   (klya/2) 

mN     /. 

(28) 

^    "1,^-" 

The entire problem is then reduced to an evaluation of the 

summations 

I -^l 
sin  (k a/2) 

k     ül.k " w 

(29) 

and 

!    Y      Sin    (kya/2) 
J
   =   "M   /       —5 1—T- N  / 

k w,   k    - u 
(30) 

Because of the symmetry associated with this lattice, 

I     (a ,  ß)   =   J (ß, a) . (31) 

Eq.   (31) implies that one need evaluate Eq,   (29) only.    Transforming the 

right-hand side of Eq,   (29) into an integral,  we obtain 

IT /a TT/a 
,   lim a 

e-0 4)r 

sin    (k a/2) dk   dk 
X   ' X        v 

-7r/a -7r/a 
{4a/m)sm  (k a/2) + (4ß/m) sm    (k a/2)-u -ie 

(32) 

«^ 
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In Appendix I,  it is shown that the value of this integral is given by 

I = :m/2ir(*)tan'1(a/ß)1/'2 + (im V/32aß)(ß/a)1//2 (33) 

under the conditions 

mu /4a « 1 

and 

mu2/4ß « 1 . (34) 

These conditions limit our discussion to the elastic portion of the 

spectrum.    It would be reasonably simple    but tedious,  to obtain higher 
2 

order terms in the   u     power series expansion of   I.    Since interesting 

physical results are obtained from the lowest order term?,  we shall not 

continue the procedure,   but shall continue with the determination of the 

elastic portion of the spectrum. 

Substitution of Eq.   (33) into Eq.   (31) yielüs 

J = (m^TTß/tan'^ß/a)1/2 + (im V/32aß)(a/ß)1/2     . (35) 

Substitution of Eqs.   v31) and (33) into Eq.   (28) yields 

j (4qAcr/m) sin    (k a/2) 

~ 1 + (2Aö/Va)tan"i(Ä/ß)1/2+(lmü2Aa/8ap)(ß/o')1/2 

(4qAß/m) sin2(k a/2) 

1 + (2Aß/irß)tan"1(P/a)1/2+(iniu2Aß/8aß)(a/ß)1/2    ' (36) 
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As in one-dimension [1, 2] we may associate the positions of the poles 

(I)    2 of the function   D"    (u )   with the modes of vibration of the lattice with the 

randomly distributed impurity springs.    The frequencies,  for each   k ?    and 

with polarization vector parallel to   x ,   are given by the real part of the roots 

of the equation 

üj^-u^ + G^V)   =   0 . (37) 

(1)    2 A complete solution of   G,     (w ) would lead to a number of roots,  for fixed 

k ,  of Eq.  (37).    The existence of these roots is a mirror of the fact that 

kj   for any one member of the ensemble,  is not a good label.    By restricting 

our calculation of   G!    (W )   to small   UJ    ,  and keeping terms of lowest order 

only in the resulting small parameters, we have suppressed the multiplicity 

of these roots.    The resulting expression for the elastic mode frequencies is 

given by 

1       m   L     a+{Zh)lAa)taLn'1 {a/Q)l/Z 

m   L     8+(2/7r 

q{Aß) 

sin (k a/2) 

sin2(k a/2) . (38)  ■ ; p7= sin   \K 

ß+(2/7r)(Aß)tan~1(ß/a)1/^-1 y 

The solution of Eq.   (37) also contains an imaginary part.    Writing 

the solution as 

U, = ül,k + Al,k"iri,k' {39) 
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the imaginary part 

(Aa)   sin  {k^/l) 

l>-     4 (aß)1/2   \a[l+(2&a/T!a)ta.n'l{a/ß)l/Z]Z 

(Aß)2 sin2 (k a/2) 
+ JL^, . ..  ., 

ß[l+(2Aß/7rß)tanJl (ß/a)1^]^ 
(40) 

corresponds [l] to the reciprocal of the lifetime of the mode.    It should be 

noted that   T.   ,     is   of   one    order higher in the small parameters of Eq.   (34) 

than is   A,   ,   .    Thus,  although the low frequency modes are shifted in frequency, 

they are quite well defined. 

Finally,  the density of states,  g ((*)),  as indicated in Eq.   (17),  and 

calculated in Appendix II,   is gi . en by the expression 

_ um 

g(ü)   =    YJT    • (41) 

Here,    a   and   ß are defined by .cqs.   (57) and (58).    These results will be 

discussed in Section V,  after the analogous expressions have been obtained 

for the isotopic impurity problem. 

IV.    THE ISOTOPIC IMPURITY PROBLEM 

A.    Formulation 

In this problem,  the unperturbed lattice is again the square lattice 

discussed in Section II.    In this case,  the   Nq   atoms at randomly positioned 

sites are replaced by isotopes of mass   m'.    The mass of the isotope at 

site   I   is denoted by   m..    The equation of motion of the atom at this site 

is given by 
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X|, 1" Xi+i, 1 

1,2" Xi+1,2 

Xi, 1' xi+2, 1 
Xi, 2" ^+2,2 

ß   0 x£,rxi+3 n + i_ Xi, 1" Xi+4, 1 
Xi, 2" Xi+4, 1 

:i, r x?+i, i 
lxi. 2" xi+l. 2 

(a   0 \ / x 
+ i, 1'    i+2, 1 

X 1      i+3, 1 

'    / 

ß   0 

i0   ß    ^Xi,2-Xi+2,2 

Xi, 1 " Xi+4 A 
i, 2      1+3, 2 0    a 

As in Seccion III,  the   x   and   /   components of the motion arr 

Xi, 2 " X i+4, 2 j 
(42) 

completely decoupled,  and may be considered separately.    As a result of 

symmetry,  it is sufficient to consider the x-component motion for a complete 

quadrant of the space of the propagation vector,  k.    The transformation to 

the normal coordinates of the unperturbed system,   Eq.   (7),  yields the 

equation of motion, 

-w   y Q. (k)expik-R.+(a/m) M2-exp (ik a)-exp(-ik a)]Q. (k) exp ik'R. 

+ (ß/m)  >  [2-exp(ik a)-exp(-ik a)] Q^k) exp i k'R. 
LJ 
k 

)   Q (k) [(l/m)-(l/m J] exp i k'R. [a (2-exp ik a-exp - ik a) 

+ ß (2-exp ik a-exp - ik a)] , (43) 
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Lquation (43) is aimiiar in form to Eq.   (9).    By mathematical manipulationa 

which are similar to those which lead from £q.   (9) to Eq.   (11),  Eq.   (43) is 

transformed into 

U>ftk-u
2) Q^k) = -^QjUO»^,   , (44) 

where 

l,k' 
-       %   '   '"     ^ -- -•"-'  ^ " (45) Vj =  "^T"   l^-^^'V^'h- 

i 

This result is identical to that obtained by Langer [2] for the one-dimensional 

problem.    It is easily shown that the entire difference between the two problems is 

represented in the form of the function   G,     (u )   which,  for this problem,  is 

given by 
.      2 

qXu 
»V,   =    L^     • (46) 

1 + irZ   "2 2~ 
k^   ül,k'-w 

where 

\   =    (m/m1) - 1 , (47) 

The remainder of the problem consists of the evaluation of the sum 

I 1 1       =   m Z   ~^ Z 
,
l,k,-W k'   wl,k'-ü 

43 \ sin2<k;a/2) 

+   ^;    > -=? ^-5      • (48) 

k' "l.k' "" J _ 
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The two sums which appear en the right-hand side of Eq.   (48) have been 

evaluated in the Appendix I and have been used in Section III,  for the case 

where Eq.   (34) holds.    Substituting Eqs.   (33) and (35) into Eq.   (48),  and 

inserting the result into Eq.   (46),  one obtains the result 

G[n(u2) =  q\Wl
2
k{l+K[l + (iU

2m/(aP)l/2]}        . (49) 

With this result,  it is easily shown that the frequencies of propagation, 

in the elastic limit,  are given by the expression 

U2 = w2 k (1+qK) , (50) 

where 

K   =    1  - (m'/m) . (51) 

The inverse lifetimes are given by 
,2        2 , n q X   m u i  w 

^ 2(1+M   (aß)  ' 

Before leaving this problem,  we should point out that another aspect 

of it has been treated by Mahanty,  Maradudin,  and Weiss [3].    They considered 

the local modes which arise when m' < m.    Many of the mathematical 

difficulties,  which these authors surmounted quite elegantly,  have been 

avoided in this work because attention was restricted to the elastic spectrum. 

V.    DISCUSSION - THE VIRTUAL CRYSTAL APPROXIMATION 

One frequently finds statements in the literature that the so-called 

"virtual crystal approximation" must hold for the elastic spectrum of a crystal 

containing a small number of impurities,   or a small degree of disorder.    In 
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this approximation,  the masses are all taken as the average mass,  and the 

spring constants are all taken as the average spring constant     The justification 

given for this approximation is usually that the wavelengths of the modes are 

very long compared to the range of the local perturbations,   so that these 

perturbations are just averaged.    Other authors have carried the apprcximaticn 

further,  and have concluded that the failure of the virtual crystal approximation 

to explain the vibrational frequencies near the Brillouin zone surface,   of 

dilute alloys,   is evidence for the existence of short-range order in these 

alloys.    In this section,  we examine this approximation with the aid of the 

solutions obtained in the preceding sections. 

The two one-dimensional solutions obtained previously [1,2] yield 

virtual crystal approximation-type results to first order in   q .    Langer [l] 

finds that the elastic spectrum of a system with is   iopic innpurities is 

completely described by an average mass given by 

m   =   {i-q)m + qm'  . (53) 

In (P-B),   the authors find that it is the inverse of the spring constant 

which must be averaged.    That is,  taking 7   as the nearest-neighbor spring 

constant of the unperturbed system,  and   7'   as the spring constant which 

replaces it at randomly positioned sites,   the elastic spectrum is completely 

described by an effective spring constant,  7 ,    which is given by the expression 

1/7 = [U-q)/^] + (q/V) • (54) 

Henceforth,  we shall speak of this equanion as the virtual crystal approximation 

for spring impurities. 

igBJf "T 
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For the isotopic substitution in two dimensions,  the situation is quite 

similar.    Equal   51 (50) can be rewritten as 

y    = mtu,   ,   [m(l-q) + qm1] (55) 

to first order in   q .    Since   m coT ,    is independent of mass,  this is the result 

expected from the virtual crystal approximation. 

There is good reason to believe that the approximation must held for 

the elastic spctrum of a system of any dimensionality and any concentration 

where the only substitutions are isotopic and the system is homogeneous on a 

macroscopic scale.    The reasoning goes as follows.    The masses enter the 

dynamical equation through acceleration terms only.    Thus,  they do not 

contribute at all to the static elastic constants,  which depend only on the 

interactions.    The only way that the masses enter into the classical expressions 

for the elastic spectrum is through the density,   since the elastic spectrum 

is,  of course,  entirely determined,  for a homogeneous solid,  by a knowledge 

of the elastic constants and the density.    Thus,  the only condition for the 

applicability of the virtual crystal approximation to the elastic spectrum of 

an isotope-substituted system is that it be homogeneous.    That is,   one must 

be able to divide the crystal into volume elements whose dimensions are small 

compared to the wavelength of the elastic modes,  all of which have the same 

density associated v/ith them.    In this case,   the virtual crystal approximation 

is just a means of calculating that density. 



ARPA-18 2-23 

The argument just presented leads one to suspect that it is in the case 

where the spring constants are changed that one expects a breakdown of the 

approximation.    This is the case.    For comparison,  we may rewrite Eq.   (54) 

as 

y=y[l + qby/iy + ^y)] . (56) 

Comparison of Eq,   (38),  for the perturbed system,  with Eq.   (4) for the 

unperturbed system,   shows that one can define effective force    constants,    a 

and   ß  ,  by the relations 

a = a 

and 

$=p 

l   ■ qAar      

a + Aa{2/jr)tan"1 (  /ß)1/2 

1 + qAß  

L_       ß+Aß(2/7r)tan"1(ß/a)1/2 

(57) 

(58) 

These results indicate immediately that a knowledge of q , a and a' is not 

sufficient to define a . The relationship between ex and ß also enters into 

the expression for   or.     The same is true for   ß . 

The reasons for this dependence can be visualized easily.   Co-isider 

Fig.   1,  which portrays the displacements of atoms in the region of an impurity 

spring from equilibrium while participating in a longitudinal mode.    Here, we 

havt taken   o-1 > or .       The intersections of the dashed line?  represent the 

equilibrium positions.    The straight vertical lines represent the lines of 

constant phase associated with the mode of the unperturbed system.    Atoms  1 

and 2 are connected bv a spring which is stronger,  and which prevents them 
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from separating by the distance associated with the unpe^t'. * bed mode.    As 

a result,  there is a shear component in the motion of,   say,  atom 1 with 

respect to atoms 3 and 5,  and the she^r  constant ß   enters into the frequency 

of a mode whose frequency is determined entirely by   a   in the unperturbed 

system.    Some of the relationships of this picture to the mathematical solution, 

Eq,   (57),  are easily seen,    "We note,  first of all,  that this is a calculation to 

first order in   q ,    Thus, we can neglect other "wrong" springs.    As a result, 

the picture indicates that there is no shear motion of atom 1 with respect to 

atom 2.    Thus,  (3*   does not enter into the expression for   a   .  Similarly, we 

would expect, from this picture,  that the virtual crystal approximation would 

hold for   a   if   ß = 0.    This is the case,  since   (2/%) tan    (oo) = 1,  making 

Eq.   (57) identical to Eq.   (56).    Setting   ß = 0   also has the effect,  of course, 

of making the lattice unstable.    Finally, we may look at the problem as the 

picture does, with a classical perturbation theory viewpoint,  treating (Ao-) 

as the perturbation on this mode.    In first order,  the energy shift is obtained 

by letting the system undergo its .unperturbed motion.    In this order, ß should 

.iot appear.    It is only in second order,  when the motion has been changed to 

first order,  that the effect of   ß   should enter in.    It is readily seen from 

Eq.   (57) tha^.   ß   only enters into terms of second and higher order in A a . 

Equations (57) and (38) do show that the two virtual crystal approximations 

which may be used to obtain average spring constants form upper and lower 

bounds for the actual  a   and   ß ,   for the model discussed here.     The 

tan     (ot/ß) and   tan     (ß/or) in these equations have upper and lower 



ARPA-18 2-25 

bounds of   0   and   TT /2 -     For tan   i  (ß/ft)   ' 0 ,   tliese equations become 

\/ä [a-q)/a] f [qA1] (59) 

and 

T   =   (l-q)P + qß'    . (60) 

For   tan     iß/or)   '      = 77/2,   of course,   *he situations are reversed.     Equation (59) 

corresponds to the    1/"y   averaging which was obVuned in one dimension,  while 

Eq.   (60) is the straightforward averaging of the spring constants.    Any inter- 

mediate values of   tan     (ß/o") will yield results whic-> lie between the two 

pimple forms of averaging.    Note that this discussion has been  restricted to 

the cases where t±ot/a> -land   Aß/ß   >    1.     These condition? must be satisfied 

if each atom has its motion centered    bout a position of stable equilibrium 

in tht  static crystal. 

Paul [4j has obtained the identical upper and lower bounds for the 

elastic constantt- of Isotropie multiphase materials.    He shows that such bounds 

hold in general in the situation where ". . .  the constituents are distinct and 

capable of separation by purely mechanical means (e.g. ,   no* solid solutions)". 

In the language of lattice dynamics,   Paul is restricting his work to situations 

in which the force constants between atoms belonging to the interiors    of 

different constituents are zero.    That is,   the elastic constants associated 

with each of the constituents  :ompletely describe the interactions.    This 

situation is quite similar to that discussed here.    In the determination of the 

elastic constants,   it is only the pairwise interactions,  and not the masses, 

which are significant.     Thus,   since nearest neighbor interactions only are 

¥ 
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considered, we may consider each impurity spring as an independent constituent, 

and the results are consistent with Paul's bounds.    For some reason that we 

do not understand,  the fact that the system is not Isotropie does not seem to 

be important in this case.    This analysis raises the possibility,  hov/ever, 

that important and interesting effects may appear when longer range inter- 

actions appear. 

Figure 2 shows the deviations of   a   and ]5 ,  as given by Eqs.   (57) and 

(58), from the virtual crystal approximation.    In these graphs,  we have taken 

or/ß = 9.    This ratio was obtained from the elastic constants of   ß-brass,  as 

measured by McManus [5] by setting  or/ß = C,, /[(C. . - C, ;,)/2].    As 

expected, a   lies close to the curve defined by Eq.   (59),    while   (T  is given, 

approximately,  by Eq,  (60).    A choice of  or/ß ^   1,  corresponding to a 

strongly covalent crystal, would lead to lines for   a   and   jIT  which have 

slopes, at   q = 0   and   1,  that are approximately equal to the average of the 

slopes associated with the two virtual crystal approximations. 

Since   a   and   ^  also determine,  through Eq.   (41),  the spectral 

2 — distribution function for small   u    ,  the remarks about   a   and   [T  apply to 

it as well. 

Finally,  it is important to note that the random spring calculation 

performed in this work applied specifically to the order-disorder problem. 

There exists another interesting related situation which remains to be 

treated.    It is the case where impurity atoms, which are substituted into 

the two-dimensional lattice,have approximately the same mass as the solvent 
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atoms,  but change the spring constants.    In this case,  the four sets of spring 

constants associated with the interaction of the impurity atom with each of its 

neighbors must appear together in the averaging.    Work is underway on this 

problem, and it is expected that the results will soon be presented.    The 

results obtained here indicate that it is highly likely :ha*. the virtual crystal 

approximations are inadequate for the depcription of the modiücations of the 

elastic spectrum of such a system.    If this is the case,  any a^empt to assign 

observed breakdowns of the approximation to ordering or clustering,  without 

corroborative diffraction evidence,  would appear unjustified.    This is 

particularly true when the modes are not a portion of the elastic spectrum, 

but are associated with the Brillouin zone surface. 
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APPENDIX   I 

EVALUATION OF THE INTEGRAL OF EQUATION (32) 

The value of the integral 

ff/a Va 8in2(k a/2) dk   dk 

e-O    J    J / 2        / / 2 /       2 
-TT/a  -IT/a  Ka/rrOsin  (k a/2)+(4ß/m)8in (k a/2)-u  -ic x y 

is required in the limits   u   «'Icr/nn   and   w « 4ß/m.    We begin by fixing 

k     and evaluating the integral over   k  .    Consider the case   u   >(4ß/m) y x 

sin (k a/2).    Let x  y  /   . 

w'2   =   u2 - {4ß/m) sin2 {kya/2) , (A-2) 

and 

77^a ^in2(k a/2) dk 

1        4       (4a/m) sin2(k a/2)-w,2-ie 
I,    =   J       V"   ~ X 5    • (A-3) 

77/a 

Letting 

z    =   exp ik a , {A-4) 

U)"2 = (mA)u'2 , (A-5) 

and 

c" = {ra/a)c, (A-6) 

Eq.  (A-3) becomes 

T     _     m      f (z-1)2   dz /A   ^x 

z   zw-(2 -u'^-ie'^z + : j * 
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where the contour of integration is the unit circle.    The denominator of the 

integrand has three roots, 

z0   =   0 , (A-8) 

21   =   (1 -^w"2-jic ") + i[l-(l - ^u"2- ^ic")2]1/2 (A-9) 

z2   =   d-^w'^-^ie") - i [i-(l- 4-w!i2 "I ie,,)2]1//2 ^A-10) 

Since   to"    < 1,    z.    is inside and   z?   is outside the unit circle.    Thus, we obtain 

the solutions 

I     -_   gi     J_L.+      ^-1)Z.i    . (A-ll) 

Evaluating Eq.   (A-ll) in terms of the variables of Eq.   (A-l),  we obtain 

[         i(ß/a)l/2[(mu)2/4ß)-sin
2(k a/2)]l/2     1 

I     =£111+         _ ^L_  \ .       (A-12) 
1 Zaa-    l [l-(müZ/4a) + (ß/a) sin^ (k a/2)]1/Z  j 

2. 2. 
In a similar manner, we consider the case   u   < (4ß/m) sin  (k a/2). 

Letting u'2 = (4ß/m) sin2 (k a/2)"U2 , {A-l 3) 
y 

we obtain the integral 

11 f3-      sin2 (k a/2) dk 
h- ] x       x 

;_2/i.   ^ /^XJ., .i 2 

_7       (4a/m)sin  (k a/2)+w 

(ß/a)1//2[sin2(k a/2)-(ü2m/4ß)]1//2 

T^V-— r—^ r" rr^—^   • (A-U) 
^a   I [l+(ß/a)sm  (k a/2)-(w m^)]1/" 

Substitution of Eqs.   (A-12) and (A-14) into Eq.   (A-l) yields the   expression 

T" 



ARPA-18 2-30 

7r/a 
I   =   api     \      dkr 

-ir/a 

(2/a)sin"1(mü2/4ß)l/2    (p/a)i/2
[(L,2m/4ß).sin2(k ^/Z)]1/^, 

0 [l-(mu;2/4a)+(ßA)sin2(ky« 

iam /» IP/Q1/       nu m/tp^-sin  ^K  a/^;j 

+ ***~ i [l-(mu;2/4a)+(ßA)sin2(k a/2)]1/2 
I '     L 

am Y4 (ßA)l/2[8in2(kya/2)-((t)
2m/4ß)]l/2dky 

^^ i?i/7      [l + (ß/«)8in2(k a^-^mAa)]1/2 

(2/a)8in     (mu Aß)-^ y 

(A-15) 

It should be noted at this time that th^ integrands are all real.    Thus, 

the first and third terms of the right-hand side of Eq.   (A-15) contribute the 

real part of   I, while the second term yields the imaginary part. 

For convenience,  we denote: 

Tf/a 

I3   =   (am/87ra)   J      dk   = m/4a , (A-16) 

-7!/a 

(2/a)8in"  (mu /4ß)  ' 7 7 , /^ 
^4ß)-sin"(kya/2r/<:      ^ T     _   iam .6.1/2 C [(mu74ß)-8ini'(k a^)]1^ dk 

U     -    ^r[a) J  5- -* * -Xr-rj , 
0 [l-(mu74tt)+(ß/ff)8in lka/2)] 

{A-17) 

ft    , /, ^^ [sin2(k a/2)-(mu2/4ß)]1//2dk 

5    '   4ira    Ä ^        2 l/2   [l-W/4a)+(ß/tt)8in2(k a/2)]1/2 

(2/a)sin"1(mu /4ß)^ y 

(A-18) 
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Let 
t   =   sin (k a/2) t 

Ö  =   (mu2/4ß) « 1 , 

and 

0'= (mu2/4a) « 1  . (A-19) 

Then Eq.   (A-17) can be writte5- as 

(6 .72 
,2,1/2 

14'^^    J   [UO.^PAH2]1/^!..;^^" •     {A-20) 

Iti« easily seen that   t « I   over the range of integration.    Thus,  we 

may approximate the entire denominator of the integrand of Eq. (A-20) by unity 

to obtain an expression which is good to only first order in   6    and   Ö '.    In 

this case we may write 

(8)1/2 

T im 
l4   ~   Zna (-|-)1/? J     (fi-t2)'/2 a, 

0 

im  u      ,  ß . 1 /2 / A   o 1 \ 
=  3^F" ( «)       • (A"21) 

Substitution of Eq.   (A-19) into Eq.   (A-18) yields the expression 

.   .   m ,B a/2  r      (t^a)'/2 dt  ,.  ,,. 
h   as'i-'    J . rr^urrn^niJTn ■ (A-22) 

(5)1/2 

In this case,  the approximations are less straightforward.    It is 

clear that   6 '   may be set equal to zero,   since it is always very much less 

than the other terms contained in the radical in which it appears.    Further 
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simplification of the integrand is hindered by the fact that Ö /t   ^  1   near the 

2    1 /2 lower limit of integration.    Nevertheless,    we may write [l-(6/t  )]        ^  I in 

the integrand for the reasons which follow.    The factor [1 ; (ß/a)t ]   '     of the 

denominator is a relatively slowly varying function.    As a result,  the remainder 

of the integrand is sharply peaked near the upper limit of integration.    In this 

region,  it ilte reasonable to replace the radical of the numerator by unity. 

Hence,  if contained the entire contribution to the real part of   I ,  it would 

be sufficient to make this replacement.    Unfortunately,  however,  a major 

portion of   I,,   is cancelled by   I-.    Thus,  it is necessary to justify this replace- 

ment a bit more carefully.    We do this by calculating an upper and lower bound 

to the integral.    It is then shown that the difference between the two is negligible 

compared to the real part of   I.    To compute these bounds,  we note that the 

integrand is positive and real over the range of integration.    In addition,  over 

this range,  [l-(5/t )]<[l-(5/t  )] '    <i.    Thus,  lower and upper bounds to the 

integral can be obtained by using the upper and lower bounds of the radical 

in the integrand.    To obtain the values of the associated integrals, we need 

1 
m   /£_j/2     f t dt 

z*a a        A /, ri-tWri + o/aH2!1/2 
i/2 H-tT'   [i + (ß/«)tT 

(ö)i/2 

m       m  .     -1 .a  \l/2     ^/«» 
=  45--2^tan     (F)       +0(Ö)' (A-23) 
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and 

mö ^_A/Z    C dt 

^   a \/y      t[l-t2]1/2[l + {ß/a)t2]1/2 

(ö)1/2 

m5    /^l/2 
Ana       a 

[tf+(p-a}ö   ßö2]1/2 + a 
log ^ ..       i/z  

0(a)' 

mö, ß .1/2 . (ß-cr) 
n 

(A-24) 

Equation (A-24) shows clearly that the dilference between the upper 

and lower bounds is of the order oi 6 log Ö . This should be compared with 

the result for I, obtained by using Eq. (A-23) for I_ , and substituting the 

results of Eqs.   (A-16) and (A-21) into Eq.  (A-15).    We get 

2  2 
T m   .     -1 , a . 1 /2 .  im u      ,0.1/2 
1 = 2^tan   (

F
)
    

+ 32*r- ^ 32aß (A-25) 

Since the real part of the right-hand side of Eq. (A-23) is of order unity, 

we are justified in neglecting the difference between the upper and lower bounds 

of   U. 
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EVALUATION OF THE SPECTRAL DISTRIBUTION FUNCTION 

FOR THE IMPURITY SPRING PROBLEM 

As indicated in Eq.   (17),  the spectral distribution function for this 

problem is given by 

*(«) - ^T   N^QO   IT  ^ Tr D(1) <w2+i^ • <A-26) 

Using Eq.  (26) for   D^1^   and Eq.  (36) for   G(1),  Eq.   (A-26) becomes, 

for small   u    , 

g(u)=^^(4w/N7r)y [(4ö/m)8in2(kxa/2)+(4p/m)sin2(kya/2)-U
2-ic]'1 

e*0 k 

jr/a ir/a 
2   /J.lim,      f    C       x,.-i   ._.   2„       ^4.,.r/   x   .   2„       /,,     2  . ,-1 

IT/a IT/a 

= (a'-u/Tr") ^ Im   T    \        [(4ä/m)sin'(k a/2)+(4f/m)sin6(k a/2)-u'-ie]"1dk dk 

-TT/a -TT/a (A-27) 

Here,   a   and   ^  are defined by Eqs.  (57) and (53),   respectively. 

Let   I(u )   be the integral ox Eq.  (A=27).    It can be written as 

I   =   2(I1 + I2) , (A = 28) 

where 

(2/a)sin":l(mw2/4ß)1/2 

TT/a 

x     \    [(4*/m)sin2(k a/2)+(4ß/m)sin2(k a/2)-u2-ie]"1 dkv ,      (A-29) j x y x 
-It/a. 
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and 

ff/a 

I     = \ dk 

/ 
(2/a)ain' (mu /4ß) ' 

n/a. 

x        T    [(4a/m)sin2(k a/2)+(4p"/m)sin2(k z/D-iZ-ie]"1   dk    .       (A-30) j x y x 
-TT/a 

The real part of the denominator of ehe intt^rand of   I-   is always positive.    As 

a result, the imaginary part of the integral is of first and higher order in   c , 

and vanishes when the   c  limit of Eq.  {A-27) is taken. 

Let 

?2   =   m^AF   , (A-31) 

w"2 - (m/<r) [w2- (4^^) sin2 (k a/2)] , (A-32) 

dk 
I3   =   ~     \       j—£^ j   . (A-33) 

a      Jl/      4 Pin (k a/2)-«"   -ic 

Then 

(2/a)sin"1| 

Ij   = J I3   dky. (A~34) 
0 

Substitution of Eq.  (A-4) into Eq.  (A-33) yields 

h   -   ^    S   -? %   , {A-35) 
3        act     J     z    - (2-(j"Ä-i€)z + 1 

where the contour is the unit circle. 
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The denominator of the integrand of Eq.   (A-35) is similar to that 

of Eq.  (A-7).    It has roots,    z.   and   z? ,  given by Eqs.  (A-9) and (A-10), 

respectively.    As before,    z,   lies inside and  z^   lies outside the unit circle. 

Thus, 

I3   =   (mi/aä) [2iri/(z1-z2)] 

=   Uffi/a) {[w2-(4ß/m)sin2(k/a/2)] 

x   [(4ä/m) + (4ß/m)sin2(k a/2)-u)2]}  1/2   . (A-36) 

After some simple manipulations which use Eq,  (A-31),  substitution 

of Eq.   {A-36) into Eq.   {A-34) yields 

(2/a)sin"1f                                            dk 

_       unir I       y  
1     2a{äF)1/2      l [52-sin2(kya/2)]1/2[I-(mW

2/4ä)+(ß/ä)sin2(kya/2)]1/Z 

(A-37) 
2 

To lowest order in   w    , v,e have 

(2/a)sin"   ? dk 

I     ~ xmff I        y 
1   ^   2a{äß)1/2 J [C2-sin2(kya/2)]1/2 

imTT /A   ,„. 
=  ^^TT • <A"■,8, 

Substitution of Eqs.  (A-28) and (A~38) into Eq.  (A 27) yields the 

density . f states 

g(u) -  '-^TTT-   - (A-39) 
2ir &$) 

TJT ' 

■ ■■ 
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FIGURE CAPTIONS 

Fig.   1      Pictorial representation of the displacements of atoms in the 

vicinity of an impurity spring, while taking part in a (10) 

longitudinal mode.    The dashed lines represent the equilibrium 

positions.    The impurity spring, with   a ' > OC ,   is between the 

atoms denoted   1   and   2.   Shear along the lines 3-15 and 4-2-6 

introduces the factor    ß  into the expression for the effective   G, . 

Fig. 2     Comparison of the effective force constants,   0. and    P"i   as a 

function of concentration,   q,   with virtual crystal approximation 

predictions.   Here,   A a/tt  and   A ß/ß  have been taken as -0.  3, 

while   0,/ß   =   9.   The dashed line represents the linear averaging 

of the force constant, while the solid curve shows the averaging 

of the inverse of the force constant. 
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